# Neoclerodane Diterpenoids from *Teucrium montbretii* Subsp. *libanoticum* and Their Absolute Configuration

Maurizio Bruno,\*,<sup>†</sup> Maria Luisa Bondì,<sup>‡</sup> Sergio Rosselli,<sup>†</sup> Antonella Maggio,<sup>†</sup> Franco Piozzi,<sup>†</sup> and Nelly A. Arnold<sup>§</sup>

Dipartimento Chimica Organica, Università Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy, Istituto di Chimica e Tecnologia Prodotti Naturali, CNR, La Malfa 153, 90146 Palermo, Italy, and Université du Saint Esprit, Faculté de Agronomie, Kaslik, Beirut, Lebanon

Received June 15, 2001

From the aerial parts of *Teucrium montbretii* subsp. *libanoticum* 10 neoclerodane diterpenoids were isolated. Three of them are new [3 $\beta$ -hydroxyteubutilin A (1), 12-*epi*-montanin G (2), 20-*epi*-3,20-di-*O*-deacetylteupyreinidin (3)], whereas the other seven, namely, 6-ketoteuscordin (4), teuscordinon (5), 6 $\beta$ -hydroxyteuscordin (6), montanin D (7), 3,20-di-*O*-deacetylteupyreinidin (8), montanin G (9), and 3-*O*-deacetylteugracilin A (10), are previously known structures. The structures of 1-3 were determined by spectral and chemical methods.

It is known that the plant genus *Teucrium*, belonging to the Labiatae (Lamiaceae), is a rich source of neoclerodane diterpenoids,<sup>1-6</sup> with many showing antifeedant activity against certain insect pests.<sup>7</sup> As part of an ongoing program of research on plants of this genus, we report herein on the investigation of *T. montbretii* subsp. *libanoticum* P. H. Davis, collected in Lebanon. This plant has been never studied previously (biologically or phytochemically).

# **Results and Discussion**

The acetone-soluble extract of the aerial parts was fractionated by column chromatography. Repeated column and radial chromatography led to three new neoclerodane diterpenes (1–3) and seven already known compounds, namely, 6-ketoteuscordin (4), teuscordinon (5),  $6\beta$ -hydroxy-teuscordin (6), montanin D (7), 3,20-di-O-deacetylteupyreinidin (8), montanin G (9), and 3-O-deacetylteugracilin A (10).

Compound 1 had the molecular formula  $C_{22}H_{28}O_7$ , and its <sup>1</sup>H and <sup>13</sup>C NMR spectra (Table 1) showed characteristic signals for a  $\beta$ -substituted furan ring, a secondary methyl group, a  $4\alpha$ , 18-oxirane ring, a  $6\alpha$ -acetoxy group, and an acetal between C-20 and C-12 as well as C-20 and C-19, all identical to those found in teubutilin A (11), a neoclerodane diterpenoid isolated from T. abutiloides.8 In addition, the IR and <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1 revealed the presence of a  $3\beta$ -hydroxy group ( $\nu_{OH}$  3480 cm<sup>-1</sup>;  $\delta_{H-3\alpha}$  4.04 dd;  $\delta_{C-3}$  66.5 d), inducing a clear  $\gamma$ -gauche effect on C-18 ( $\delta$  44.9 t). The relative configurations of the C-12 and C-20 asymmetric centers were established by NOE experiments. Thus, irradiation at  $\delta$  1.00 (Me-17) caused NOE enhancements in the signals of the furanoid protons H-14 and H-16 (2.9% and 0.9%, respectively) and of the acetalic proton H-20 (9.0%), whereas no effect was observed on H-12.9,10 From these data it was clear that the C-17 methyl group, the furan ring, and the C-20 proton are on the same side of the plane containing C-11, C-12, and C-20. This information allowed us to assign to this compound the structure and relative configuration depicted in formula 1, with the compound accorded the trivial name

2 R = H, R' =  $\alpha$ -OAc,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac 1 R =  $\alpha$ -A,  $\beta$ -A,  $\beta$ -H, R" = Ac



 $3\beta$ -hydroxyteubutilin A. The full assignments of protons and protonated carbons were made by HETCOR one-bond NMR experiments.

The MS (m/z 462) and elemental analysis indicated  $C_{24}H_{30}O_9$  as the molecular formula of compound **2**. It showed absorptions for hydroxy, furan,  $\gamma$ -lactone, and

10.1021/np010303m CCC: \$22.00 © 2002 American Chemical Society and American Society of Pharmacognosy Published on Web 12/28/2001

<sup>\*</sup> To whom correspondence should be addressed. Tel: 39-091-596905. Fax: 39-091-596825. E-mail: bruno@dicpm.unipa.it.

<sup>&</sup>lt;sup>†</sup> Università di Palermo.

<sup>&</sup>lt;sup>‡</sup> Istituto di Chimica e Tecnologia dei Prodotti Naturali.

<sup>§</sup> Université du Saint Esprit.



acetate groups in its IR spectrum. The <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 2 and 3) were consistent with the presence of a  $\beta$ -substituted furan ring, a C-20/C-12  $\gamma$ -lactone, a  $4\alpha$ , 18-epoxide group, a secondary methyl, two acetyl groups, and a secondary hydroxy group. One of the two acetoxy groups was clearly in the C-19 position, while the two remaining oxygenated functions occurred as  $3\beta$  and  $6\alpha$ . Teumicropodin (12), a neoclerodane diterpenoid isolated from *T. micropodioides*,<sup>11</sup> has  $3\beta$ -acetoxy and  $6\alpha$ -hydroxy substitution. Since <sup>1</sup>H and <sup>13</sup>C NMR spectra of our compound differed somewhat from those of teumicropodin, we assumed that  $3\beta$ -hydroxy and  $6\alpha$ -acetoxy substituents are present in **2**. Our hypothesis was confirmed by pyridinium dichromate oxidation that yielded a compound identical in all respects with  $4\alpha$ , 18-epoxytafricanin B (13), a synthetic derivative of tafricanin B.12 The 13C NMR spectral data of  $4\alpha$ , 18-epoxytafricanin B, not previously reported, are shown

Table 1. NMR Data of Compound 1

| proton     | $\delta_{ m H}$ | $J_{\mathrm{H,H}}$ (Hz) |      | carbon | $\delta_{\mathrm{C}}$ |
|------------|-----------------|-------------------------|------|--------|-----------------------|
| 1α         | 2.28 dddd       | $1\alpha, 1\beta$       | 13.2 | 1      | 24.8 t                |
| $1\beta$   | 2.05 dddd       | 1α,2α                   | 4.0  | 2      | 31.2 t                |
| 2α         | 2.18 dddd       | $1\alpha, 2\beta$       | 13.2 | 3      | 66.5 d                |
| $2\beta$   | 1.45 dddd       | $1\alpha, 10\beta$      | 13.2 | 4      | 67.2 s                |
| 3α         | 4.04 dd         | $1\beta,2\alpha$        | 4.0  | 5      | 40.8 s                |
| $6\beta$   | 4.86 dd         | $1\beta, 2\beta$        | 4.0  | 6      | 73.9 d                |
| 7α         | 1.60 ddd        | $1\beta, 10\beta$       | 5.3  | 7      | 35.3 t                |
| $7\beta$   | 1.99 ddd        | $2\alpha, 2\beta$       | 12.5 | 8      | 35.8 d                |
| <b>8</b> β | 1.72 ddq        | 2α,3α                   | 4.0  | 9      | 48.7 s                |
| $10\beta$  | 1.48 dd         | 2β,3α                   | 11.7 | 10     | 46.5 d                |
| 11A        | 2.11 dd         | 6β,7α                   | 10.5 | 11     | 38.3 t                |
| 11B        | 2.19 dd         | $6\beta,7\beta$         | 5.8  | 12     | 73.7 d                |
| 12         | 5.20 dd         | $7\alpha, 7\beta$       | 12.7 | 13     | 126.2 s               |
| 14         | 6.41 dd         | 7α, <b>8</b> β          | 12.7 | 14     | 108.5 d               |
| 15         | 7.41 dd         | $7\beta, 8\beta$        | 3.0  | 15     | 143.5 d               |
| 16         | 7.42 m          | $8\beta,17$             | 6.4  | 16     | 139.5 d               |
| Me-17      | 1.00 d          | 11A,11B                 | 13.0 | 17     | 16.2 q                |
| 18A        | 2.86 d          | 11A,12                  | 9.2  | 18     | 44.9 t                |
| 18B        | 2.98 d          | 11B,12                  | 6.9  | 19     | 62.6 t                |
| 19A        | 4.01 d          | 14,15                   | 1.7  | 20     | 102.7 d               |
| 19B        | 4.25 d          | 14,16                   | 0.9  | Ac     | 170.5 s               |
| 20         | 5.11 s          | 15,16                   | 1.7  |        | 21.3 q                |
| Ac         | 2.03 s          | 18A,18B                 | 3.9  |        |                       |
|            |                 | 19A,19B                 | 13.0 |        |                       |



in Table 3. From the same fraction, we isolated a compound (9) with the same elemental formula as 2, but slightly less polar on TLC (petroleum ether-EtOAc, 2:3). The <sup>1</sup>H and <sup>13</sup>C NMR spectra (in CDCl<sub>3</sub>) of the two compounds were very similar, but major differences in the latter compound were downfield shifts of the C-17 protons ( $\delta_H$  1.11 d) and the C-8 ( $\delta_{\rm C}$  40.8) and C-9 ( $\delta_{\rm C}$  51.2) signals and an upfield shift of the C-10 ( $\delta_{C}$  50.3) signal, relative to analogous data for 2. Similar observations have been previously reported<sup>9,10,13</sup> for neoclerodane diterpenoid pairs of epimers at carbon C-12. Hence we have assigned to this compound the known structure 9, corresponding to montanin G, a neoclerodane diterpenoid with a 12R configuration, isolated from T. montanum<sup>14</sup> and whose <sup>13</sup>C NMR spectrum, measured in pyridine- $d_5$ , was not comparable with the spectrum of 2 in CDCl<sub>3</sub>. Therefore the <sup>13</sup>C spectra of compounds 2 and 9 were run in both CDCl<sub>3</sub> and pyridine $d_5$  (Table 3). Moreover, the 12S configuration of compound **2** was confirmed by NOE experiments. Thus, irradiation at  $\delta$  1.02 (C-17 protons) caused NOE enhancements in the signals of the H-14 and H-16 furanoid protons (3.8% and 1.3%, respectively), whereas no effect was observed in the H-12 signal.<sup>10</sup> The trivial name for compound **2** is 12-epimontanin G. The co-occurrence of a pair of clerodane diterpene C-12 epimers in the same plant is not a usual feature and has been reported only for T. kotschyanum<sup>13</sup> and more recently for *T. maghrebinum*.<sup>15</sup>

The third compound, apparently homogeneous by TLC, showed the occurrence of two products in a 7:3 ratio in the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra (Tables 2 and 3). The spectral data of the main component agreed exactly with those reported in the literature for 3,20-di-*O*-deacetylte-upyreinidin (**8**),<sup>16</sup> a neoclerodane diterpene isolated from *Teucrium polium* subsp. *aurasianum*. The minor component showed NMR spectra quite similar to those of **8**, but with some significant differences. In fact, variations were observed for the chemical shifts of the Me-17 protons ( $\delta$  1.25 vs 0.97), the H-20 hemiacetalic proton ( $\delta$  5.36 vs 5.29), the H-19B proton ( $\delta$  4.99 vs 4.76), and the C-9 ( $\delta$  49.9 vs 52.8), C-11 ( $\delta$  45.9 vs 42.7), and C-13 ( $\delta$  125.6 vs 124.9) signals. Such differences led us to hypothesize a structure epimeric to **8** at C-20 and/or C-12 for this product.

The oxidation of this mixture by pyridinium dichromate in diluted CH<sub>2</sub>Cl<sub>2</sub> solution gave a single product, identified

Table 2.<sup>1</sup>H NMR Spectral Data of Compounds 2, 3, 8, 14, and15

| proton             | 2       | 3       | 8       | 14      | 15                |
|--------------------|---------|---------|---------|---------|-------------------|
| 3α                 | 4.20 dd | 4.13 dd | 4.09 dd | 5.31 dd | 5.38 dd           |
| $6\beta$           | 4.90 dd | 4.90 dd | 4.90 dd | 4.85 dd | 4.69 dd           |
| 11(2H)             | 2.39 d  | а       | а       | а       | а                 |
| 12                 | 5.38 t  | а       | 5.17 dd | 4.97 dd | 4.86 <sup>a</sup> |
| 14                 | 6.38 dd | 6.47 dd | 6.40 dd | 6.42 dd | 6.47 dd           |
| 15                 | 7.44 dd | 7.40 dd | 7.40 dd | 7.40 dd | 7.40 dd           |
| 16                 | 7.45 m  | 7.42 dd | 7.42 dd | 7.42 dd | 7.42 dd           |
| Me17               | 1.02 d  | 1.25 d  | 0.97 d  | 0.98 d  | 1.25 d            |
| 18A                | 2.82 d  | 2.83 d  | 2.80 d  | 2.62 d  | 2.66 d            |
| 18B                | 2.91 d  | 2.94 d  | 2.93 d  | 2.88 d  | 2.91 d            |
| 19A                | 4.36 d  | 4.50 d  | 4.62 d  | 4.49 d  | 4.53 d            |
| 19B                | 5.24d   | 4.99 d  | 4.76 d  | 4.66 d  | 4.83 d            |
| 20                 |         | 5.36 d  | 5.29 d  | 4.68 s  | 4.85 s            |
| Ac                 | 2.00 s  | 1.99 s  | 1.98 s  | 1.97 s  | 1.99 s            |
|                    | 2.09 s  | 2.13 s  | 2.11 s  | 2.01 s  | 2.01 s            |
|                    |         |         |         | 2.14 s  | 2.17 s            |
| 20-OH              |         | 5.42 d  | 4.54 d  |         |                   |
| OCH <sub>3</sub>   |         |         |         | 3.40 s  | 3.50 s            |
| $J_{\rm H,H}$ (Hz) |         |         |         |         |                   |
| 2α,3α              | 5.0     | 4.6     | 4.6     | 4.4     | 4.4               |
| 2β,3α              | 11.7    | 11.7    | 11.7    | 11.8    | 11.8              |
| 6β,7α              | 12.0    | 11.4    | 11.4    | 11.4    | 11.4              |
| $6\beta,7\beta$    | 4.3     | 5.0     | 5.0     | 5.0     | 5.0               |
| $8\beta$ ,17       | 6.6     | 6.9     | 6.7     | 6.7     | 6.9               |
| 11A,12             | 8.2     | b       | 10.3    | 10.5    | b                 |
| 11B,12             | 8.2     | b       | 6.8     | 6.3     | b                 |
| 14,15              | 1.7     | 1.7     | 1.7     | 1.7     | 1.7               |
| 14,16              | 0.9     | 0.9     | 0.9     | 0.9     | 0.9               |
| 15,16              | 1.7     | 1.7     | 1.7     | 1.7     | 1.7               |
| 18A,18B            | 4.1     | 4.0     | 4.0     | 4.0     | 4.0               |
| 19A,19B            | 13.3    | 12.9    | 12.9    | 12.8    | 12.8              |
| 20,OH              |         | 4.2     | 4.2     |         |                   |

<sup>a</sup> Overlapped signal. <sup>b</sup> Not observed.

as  $4\alpha$ , 18-epoxytafricanin B (13). This result confirmed the occurrence of epimerization at C-20 and permitted the assignment to the product of the structure 20-*epi*-3, 20-di-*O*-deacetylteupyreinidin (3).

To isolate the two pure epimers **3** and **8**, an unsuccessful radial chromatography separation was performed ( $CHCl_3$ -MeOH, 49:1), affording only a complex, unresolvable

Table 3. <sup>13</sup>C NMR Spectral Data of Compounds 2, 3, 8, 9, 13, 14, and 15

mixture of many products. The acetylation of this mixture, followed by column chromatography (petroleum ether– $Et_2O$ , 2:3), yielded two pure products, **14** and **15**, and another unresolvable mixture. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of this last mixture showed the occurrence of two products: the more abundant (80%) was identified as teupyreinidin (**16**) by comparison with literature data.<sup>17</sup> The spectral data of the minor product led us to presume the probable occurrence of the C-20 epimer of teupyreinidin.

The pure compound 14 had a molecular formula of C<sub>27</sub>H<sub>36</sub>O<sub>10</sub> and its IR spectrum was devoid of hydroxyl absorptions. The <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 2 and 3) showed the presence of a  $3\beta$ -acetoxy group ( $\delta_{H-3\alpha}$  5.31 dd,  $\delta_{C-3}$  67.0 d), and, surprisingly, a methoxy group ( $\delta_{H}$ 3.40 s,  $\delta_C$  54.7 q) at C-20 ( $\delta_H$  4.68 s,  $\delta_C$  106.9 d). The configuration of the C-20 asymmetric center was established by a NOE experiment. Thus irradiation at  $\delta$  0.98 (Me-17) caused NOE enhancements in the signals of the furanoid protons H-14 and H-16 (4.6% and 2.6%, respectively) and the acetalic proton H-20 (7.9%), whereas no effect was observed on  $H-12.^{9,10}$  From these data, it was clear that the C-17 methyl group, the furan ring, and the C-20 proton are on the same side of the plane containing C-11, C-12, and C-20, and therefore, the structure 14 was assigned to this compound. The pure compound 15 was the C-20 epimer of 14, as clearly shown by its <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 2 and 3) and a NOE experiment. In fact, irradiation at  $\delta$  1.25 (Me-17) caused NOE enhancements only on the signals of the furanoid protons H-14 and H-16 (4.4% and 2.1%, respectively), whereas no effect was observed on H-12 and on the acetalic proton H-20. From these data, this compound was assigned the structure 15.

The generation of two methoxy derivatives (14 and 15) confirmed again the occurrence of two C-20 epimers in the original mixture and could be attributed to the methylation of the OH-20 during the unsuccessful radial chromatography with the  $CHCl_3$ -MeOH eluent.<sup>18</sup>

20-*epi*-3,20-Di-*O*-deacetylteupyreinidin (**3**) could be an artifact formed during the extraction or the chromatogra-

|         | e i illin specia      |                     | inpoundo 2, o         | , 0, 0, 10, 11,       |                     |                       |                        |                        |                        |
|---------|-----------------------|---------------------|-----------------------|-----------------------|---------------------|-----------------------|------------------------|------------------------|------------------------|
| carbon  | <b>2</b> <sup>a</sup> | $2^{b}$             | <b>3</b> <sup>a</sup> | <b>8</b> <sup>a</sup> | <b>9</b> a          | <b>9</b> <sup>b</sup> | <b>13</b> <sup>a</sup> | <b>14</b> <sup>a</sup> | <b>15</b> <sup>a</sup> |
| 1       | 22.1 t                | 22.2 t              | 21.7 t                | 21.8 t                | 21.3 t              | 21.7 t                | 23.1 t                 | 22.0 t                 | 21.9 t                 |
| 2       | 32.0 t <sup>c</sup>   | 32.6 t <sup>c</sup> | 33.3 t                | 33.2 t                | 32.1 t <sup>c</sup> | 32.9 t <sup>c</sup>   | 39.2 t                 | 31.9 t                 | 31.0 t                 |
| 3       | 65.3 d                | 64.7 d              | 65.7 d                | 66.1 d                | 65.6 d              | 64.8 d                | 202.9 s                | 67.0 d                 | 67.0 d                 |
| 4       | 67.4 s                | 67.7 s              | 67.1 s                | 67.4 s                | 67.4 s              | 67.7 s                | 65.2 s                 | 65.0 s                 | 64.8 s                 |
| 5       | 45.2 s                | 45.6 s              | 45.2 s                | 45.1 s                | 45.1 s              | 45.4 s                | 46.2 s                 | 45.9 s                 | 45.9 s                 |
| 6       | 71.6 d                | 71.9 d              | 68.7 d                | 70.6 d                | 71.5 d              | 71.9 d                | 70.8 d                 | 70.5 d                 | 68.9 d                 |
| 7       | 32.2 t <sup>c</sup>   | 33.7 t <sup>c</sup> | 32.3 t                | 34.6 t                | 32.6 t <sup>c</sup> | 33.6 t <sup>c</sup>   | 32.6 t                 | 34.8 t                 | 33.6 t                 |
| 8       | 38.2 d                | 37.5 d              | 40.4 d                | 40.9 d                | 40.8 d              | 40.1 d                | 38.6 d                 | 40.9 d                 | 40.4 d                 |
| 9       | 50.8 s                | 51.0 s              | 49.9 s                | 52.8 s                | 51.2 s              | 51.3 s                | 51.9 s                 | 52.9 s                 | 50.4 s                 |
| 10      | 52.5 d                | 51.9 d              | 51.6 d                | 51.4 d                | 50.3 d              | 49.7 d                | 50.8 d                 | 51.2 d                 | 51.6 d                 |
| 11      | 43.0 t                | 42.3 t              | 45.9 t                | 42.7 t                | 43.2 t              | 42.6 t                | 43.9 t                 | 42.6 t                 | 45.5 t                 |
| 12      | 71.9 d                | 71.6 d              | 72.9 d                | 72.1 d                | 71.9 d              | 71.5 d                | 72.2 d                 | 71.5 d                 | 72.4 d                 |
| 13      | 125.0 s               | 125.7 s             | 125.6 s               | 124.9 s               | 125.3 s             | 125.9 s               | 124.9 s                | 124.9 s                | 125.9 s                |
| 14      | 107.8 d               | 108.6 d             | 108.7 d               | 108.7 d               | 107.8 d             | 108.6 d               | 107.9 d                | 108.7 d                | 108.8 d                |
| 15      | 144.2 d               | 144.5 d             | 143.4 d               | 143.3 d               | 144.3 d             | 144.5 d               | 144.4 d                | 143.4 d                | 143.5 d                |
| 16      | 139.5 d               | 140.4 d             | 139.5 d               | 139.3 d               | 139.1 d             | 140.0 d               | 139.5 d                | 139.4 d                | 139.5 d                |
| 17      | 16.3 q                | 16.2 q              | 17.4 q                | 17.1 q                | 16.7 q              | 16.4 q                | 16.3 q                 | 17.2 q                 | 17.5 q                 |
| 18      | 42.7 t                | 42.1 t              | 43.0 t                | 43.8 t                | 42.2 t              | 41.7 t                | 51.0 t                 | 43.6 t                 | 43.1 t                 |
| 19      | 61.7 t                | 61.6 t              | 62.0 t                | 62.2 t                | 61.6 t              | 61.9 t                | 62.8 t                 | 61.7 t                 | 61.4 t                 |
| 20      | 175.7 s               | 176.5 s             | 99.5 d                | 99.8 d                | 175.7 s             | 176.3 s               | 176.0 s                | 106.9 d                | 107.0 d                |
| Ac      | 170.1 s               | 169.9 s             | 171.1 s               | 171.0 s               | 170.2 s             | 170.0 s               | 170.3 s                | 170.2 s                | 171.1 s                |
|         | 170.1 s               | 169.3 s             | 170.0 s               | 169.9 s               | 170.0 s             | 169.3 s               | 169.3 s                | 170.0 s                | 170.0 s                |
|         |                       |                     |                       |                       |                     |                       |                        | 169.6 s                | 169.6 s                |
|         | 21.2 q                | 20.9 q              | 21.1 q                | 21.1 q                | 21.2 q              | 20.9 q                | 21.2 q                 | 21.1 q                 | 21.2 q                 |
|         | 21.1 q                | 20.6 q              | 21.0 q                | 21.0 q                | 21.0 q              | 20.7 q                | 20.6 q                 | 21.1 q                 | 21.1 q                 |
|         |                       |                     |                       |                       |                     |                       |                        | 21.0 q                 | 20.9 q                 |
| $OCH_3$ |                       |                     |                       |                       |                     |                       |                        | 54.7 q                 | 57.7 q                 |
|         |                       |                     |                       |                       |                     |                       |                        |                        |                        |

<sup>*a*</sup> CDCl<sub>3</sub> solution. <sup>*b*</sup> Pyridine-*d*<sub>5</sub> solution. <sup>*c*</sup> These assignments may be reversed.

phy through a CHO-9 $\alpha$  intermediate, even if there are no prior examples in the literature of the isolation of two C-20 epimers from the same plant.<sup>16,19–21</sup>

Oxidation of the mixture of 20-*epi*-3,20-di-*O*-deacetylteupyreinidin (**3**) and 3,20-di-*O*-deacetylteupyreinidin (**8**), repeated in a concentrated solution of  $CH_2Cl_2$  using only 1 equiv of pyridinium dichromate, was more selective; besides a small amount of  $4\alpha$ ,18-epoxytafricanin B (**13**), 12-*epi*montanin G (**2**) was isolated as the main product.

Acetylation of 12-*epi*-montanin G (2) yielded 12-*epi*teupyreinin (17), a diterpene previously isolated from *T. nudicaule*<sup>22</sup> and also prepared by semisynthesis from teumicropodin (12).<sup>11</sup> The latter has been correlated in turn with teulepicin (18) and tafricanin A (19),<sup>23</sup> whose neoclerodane absolute configuration is known.<sup>12</sup> Hence, in the present paper, the absolute configurations were determined for 20-*epi*-3,20-di-*O*-deacetylteupyreinidin (3), 3,20-di-*O*deacetylteupyreinidin (8), 12-*epi*-montanin G (2), and tafricanin B (20), the latter being in turn correlated with 4 $\alpha$ ,18-epoxytafricanin B (13).<sup>12</sup> Previously known compounds were identified by conventional methods.

From a taxonomic point of view, the species *T. montbretii* belongs to the section *Isotriodon* Boiss.<sup>24</sup> It can be pointed out that other subspecies of *T. montbretii* show a different qualitative content of neoclerodane diterpenoids: in fact, *T. montbretii* subsp. *montbretii*<sup>25</sup> contains 10 neoclerodanes, of which only 6-ketoteuscordin (4), 6β-hydroxy-teuscordin (6), and montanin D (7) occur in the *T. montbretii* subsp. *libanoticum; T. montbretii* subsp. *heliotropifolium*<sup>26</sup> contains 6β-hydroxyteuscordin (6), montanin D (7), and other two neoclerodanes, namely, teugin and teucrin H<sub>2</sub> also occurring in *T. montbretii* subsp. *montbretii*. Finally, *T. montbretii* subsp. *pamphilicum* is devoid of diterpenoids.<sup>4</sup>

## **Experimental Section**

**General Experimental Procedures.** Optical rotations were measured on a Perkin-Elmer 141 polarimeter. IR spectra were obtained on a Perkin-Elmer 1310 spectrometer. <sup>1</sup>H NMR spectra were recorded in CDCl<sub>3</sub> solution using a Bruker AC 250E instrument at 250 MHz and Bruker AMX 600 at 600 MHz. <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> or pyridine- $d_5$  solution on the same instruments at 62.7 and 150.9 MHz. EIMS were recorded on a Finnigan TSQ70 instrument (70 eV, direct inlet). Elemental analysis was carried out with a Perkin-Elmer 240 apparatus. Merck Si gel (70–230 mesh), deactivated with 15% H<sub>2</sub>O, was used for column chromatography. Radial chromatography was performed on a Harrison Chromatotron 7924 T apparatus using Merck Si gel PF<sub>254</sub> 60 as plate adsorbent.

**Plant Material.** The aerial parts of *T. montbretii* subsp. *libanoticum* P. H. Davis were collected at Hamat, near Ras Chakka, Lebanon, in June 1999. A voucher specimen (leg., det. and confirmed by N. Arnold *s.n.*) is deposited in the Herbarium of the Botanischer Garten und Botanisches Museum, Freie Universitat, Berlin.

**Extraction and Isolation.** Dried and finely powdered aerial parts of *T. montbretii* subsp. *libanoticum* (275 g) were extracted with Me<sub>2</sub>CO ( $3 \times 5$  L) at room temperature for 1 week. After filtration, the solvent was evaporated at low temperature ( $35 \,^{\circ}$ C), yielding a gum (21 g) which was chromatographed over a Si gel dry column with a solvent gradient from 100% petroleum ether (bp 50–70 °C) to 100% EtOAc, and finally with EtOAc–MeOH (19:1, 9:1). The fraction that eluted with petroleum ether–EtOAc (3:2) (100 mg) was subjected to radial chromatography, using CHCl<sub>3</sub> as eluent, to afford 6-ketoteuscordin ( $17 \,$  mg) (4).<sup>27,28</sup> The fraction that eluted with petroleum ether–EtOAc (2:3) (90 mg) was also subjected to radial chromatography, using CHCl<sub>3</sub>–MeOH, 99:1, as eluent, to afford teuscordinon ( $23 \,$  mg) (5).<sup>29</sup> The fraction that eluted

with petroleum ether–EtOAc (3:7) (600 mg) was purified by column chromatography (petroleum ether–EtOAc 1:1) to give the following compounds, in order of increasing polarity:  $3\beta$ -hydroxyteubutilin A (3 mg) (**1**),  $6\beta$ -hydroxyteuscordin (10 mg) (**6**),<sup>30</sup> montanin D (12 mg) (**7**),<sup>31,32</sup> a mixture (170 mg) of 3,20-di-*O*-deacetylteupyreinidin (**8**)<sup>16</sup> and 20-*epi*-3,20-di-*O*-deacetylteupyreinidin (**3**), montanin G (21 mg) (**9**),<sup>14</sup> and 12-*epi*-montanin G (18 mg) (**2**). The fraction that eluted with EtOAc (150 mg) was subjected to radial chromatography, using CHCl<sub>3</sub>–MeOH (19:1) as eluent, to afford 3-*O*-deacetylteugracilin A (94 mg) (**10**).<sup>33</sup> The known compounds were identified by comparison of their [ $\alpha$ ]<sub>D</sub>, IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and mass spectra data with published values.

**3β-Hydroxyteubutilin A (1):** amorphous solid; IR (KBr)  $\nu_{max}$  3480, 3140, 3075, 2956, 2891, 1730, 1500, 1442, 1375, 1247, 1161, 1033, 980, 872, 802 cm<sup>-1</sup>; <sup>1</sup>H NMR (600 MHz), see Table 1; <sup>13</sup>C NMR (150.9 MHz), see Table 1; EIMS *m/z* 404 (1) [M]<sup>+</sup>, 386 (5) [M – H<sub>2</sub>O]<sup>+</sup>, 344 (10), 315 (12), 289 (24), 173 (23), 94 (100), 91 (27), 81 (32), 79 (20), 43 (66); *anal.* C 65.17%, H 6.91%, calcd for C<sub>22</sub>H<sub>28</sub>O<sub>7</sub>, C 65.33%, H 6.98%.

**12**-*epi*-**Montanin G (2):** amorphous solid;  $[\alpha]^{20}{}_{\rm D}$  +17.0° (*c* 0.33 CHCl<sub>3</sub>); IR (KBr)  $\nu_{\rm max}$  3500, 3130, 3075, 3000, 1760, 1735, 1500, 1460, 1260, 1240, 1065, 915, 875 cm<sup>-1</sup>; <sup>1</sup>H NMR (250 MHz), see Table 2; <sup>13</sup>C NMR (62.7 MHz), see Table 3; EIMS *m*/*z* 462 (1) [M]<sup>+</sup>, 419 (2) [M - COCH<sub>3</sub>]<sup>+</sup>, 402 (3) [M - HOAc]<sup>+</sup>, 371 (4), 342 (8) [M - 2 × HOAc]<sup>+</sup>, 329 (8), 311 (11), 267 (5), 173 (10), 105 (10), 94 (100), 81 (92); *anal.* C 62.39%, H 6.42%, calcd for C<sub>24</sub>H<sub>30</sub>O<sub>9</sub>, C 62.32%, H 6.54%.

**Oxidation of 12**-*epi*-Montanin G (2). 12-*epi*-Montanin G (2) (5 mg, 0.011 mmol) was dissolved in  $CH_2Cl_2$  (10 mL), and pyridinium dichromate (12 mg, 0.03 mmol) was added. The suspension was stirred for 24 h and then filtered on Florisil (Fluka 46386). Column chromatography on Si gel (petroleum ether–EtOAc, 1:1) yielded 4 mg of 4 $\alpha$ ,18-epoxytafricanin B (13).

**Mixture of 20**-*epi*-3,20-Di-*O*-deacetylteupyreinidin (3) and 3,20-Di-*O*-deacetylteupyreinidin (8): amorphous solid; IR (KBr)  $\nu_{max}$  3480, 3120, 3080, 2960, 2935, 2880, 1730, 1505, 1385, 1320, 1255, 1155, 1117, 875, 800 cm<sup>-1</sup>; <sup>1</sup>H NMR (250 MHz), see Table 2; <sup>13</sup>C NMR (62.7 MHz), see Table 3; EIMS *m*/*z* 464 (1) [M]<sup>+</sup>, 404 (3) [M – HOAc]<sup>+</sup>, 344 (5) [M – 2 × HOAc]<sup>+</sup>, 326 (12), 107 (10), 94 (30), 81 (25), 43 (100); *anal.* C 61.95%, H 6.81%, calcd for C<sub>24</sub>H<sub>32</sub>O<sub>9</sub>, C 62.05%, H 6.94%.

**Oxidation of the Mixture of 20**-*epi*-3,20-Di-*O*-deacetylteupyreinidin (3) and 3,20-Di-*O*-deacetylteupyreinidin (8). The unresolved mixture (20 mg, 0.043 mmol) containing 20-*epi*-3,20-di-*O*-deacetylteupyreinidin (3) and 3,20-di-*O*deacetylteupyreinidin (8) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 mL), and pyridinium dichromate (49 mg, 0.13 mmol) was added. The suspension was stirred for 24 h and then filtered on Florisil. Column chromatography on Si gel (petroleum ether–EtOAc, 1:1) yielded 17 mg of 4 $\alpha$ ,18-epoxytafricanin B (13).

Selective Oxidation of the Mixture of 20-*epi*-3,20-Di-O-deacetylteupyreinidin (3) and 3,20-Di-O-deacetylteupyreinidin (8). The unresolved mixture (22 mg, 0.047 mmol) containing 20-*epi*-3,20-di-O-deacetylteupyreinidin (3) and 3,-20-di-O-deacetylteupyreinidin (8) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (2 mL), and pyridinium dichromate (18 mg, 0.047 mmol) was added. The suspension was stirred for 24 h and then filtered on Florisil. Column chromatography on Si gel (petroleum ether–EtOAc, 1:1) yielded 17 mg of 12-*epi*-montanin G (2) and 2 mg of 4,18-epoxytafricanin B (13).

Acetylation of the Mixture of 20-*epi*-3,20-Di-*O*-deacetylteupyreinidin (3) and 3,20-Di-*O*-deacetylteupyreinidin (8). The unresolved mixture (100 mg) containing 20-*epi*-3,20di-*O*-deacetylteupyreinidin (3) and 3,20-di-*O*-deacetylteupyreinidin (8) was dissolved in 3 mL of Ac<sub>2</sub>O-pyridine (2:1) and maintained at room temperature for 24 h. The reaction mixture was diluted with H<sub>2</sub>O, extracted with EtOAc, washed with saturated aqueous NaHCO<sub>3</sub>, and dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. Column chromatography on Si gel (petroleum ether-EtOAc, 1:1) yielded in order of increasing polarity 37 mg of 20-*O*-deacetyl-20-methoxyteupyreinidin (14), 14 mg of 20-*epi*-20-*O*-deacetyl-20-methoxyteupyreinidin (15), and 40 mg of an unresolvable mixture containing mainly teupyreinidin (16) and the presumed 20-epi-teupyreinidin. The <sup>1</sup>H and <sup>13</sup>C NMR data previously<sup>17</sup> reported for **16** matched with the signals observed in the mixture.

20-O-Deacetyl-20-methoxyteupyreinidin (14): amorphous solid;  $[\alpha]^{20}_{D}$  +11.0° (c 0.20 CHCl<sub>3</sub>); IR (KBr)  $\nu_{max}$  3122, 3055, 2955, 2925, 2867, 2848, 1738, 1733, 1718, 1363, 1254, 1234, 1159, 1103, 1054, 1024, 892, 875, 731 cm<sup>-1</sup>; <sup>1</sup>H NMR (250 MHz), see Table 2; <sup>13</sup>C NMR (62.7 MHz), see Table 3; EIMS m/z [M]<sup>+</sup> absent, 460 (5) [M - HOAc]<sup>+</sup>, 345 (29), 340 (14)  $[M - 3 \times HOAc]^+$ , 174 (45), 128 (52), 107 (47), 95 (79), 94 (94), 81 (100); anal. C 62.14%, H 6.89%, calcd for  $C_{27}H_{36}O_{10}$ , C 62.29%, H 6.97%.

20-epi-20-O-Deacetyl-20-methoxyteupyreinidin (15): amorphous solid;  $[\alpha]^{20}_{D}$  –18.1° (*c* 0.32 CHCl<sub>3</sub>); IR (KBr)  $\nu_{max}$  3122, 3055, 2955, 2925, 2867, 2848, 1738, 1733, 1718, 1363, 1254, 1234, 1159, 1103, 1054, 1024, 892, 875, 731 cm<sup>-1</sup>; <sup>1</sup>H NMR (250 MHz), see Table 2; <sup>13</sup>C NMR (62.7 MHz), see Table 3; EIMS *m*/*z* [M]<sup>+</sup> absent, 460 (5) [M – HOAc]<sup>+</sup>, 345 (29), 340 (14)  $[M - 3 \times HOAc]^+$ , 174 (45), 128 (52), 107 (47), 95 (79), 94 (94), 81 (100); anal. C 62.11%, H 6.87%, calcd for C<sub>27</sub>H<sub>36</sub>O<sub>10</sub>, C 62.29%, H 6.97%

Acetylation of 12-epi-Montanin G (2). 12-epi-Montanin G (2) (4 mg) was dissolved in 2 mL of Ac<sub>2</sub>O-pyridine (2:1) and maintained at room temperature for 24 h. The reaction mixture was diluted with  $\hat{H_2}O$ , extracted with EtOAc, washed with saturated aqueous NaHCO<sub>3</sub>, and dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. Column chromatography on Si gel (petroleum ether-EtOAc, 1:1) yielded 3 mg of 12-epi-teupyreinin (17).

Acknowledgment. The present work was supported by the Italian Government (MURST Research Funds 40% and 60%).

### **References and Notes**

- (1) Piozzi, F. Heterocycles 1981, 15, 1489-1503.
- (2) Piozzi, F.; Savona, G.; Rodriguez, B. Heterocycles 1987, 25, 807-841.
- Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243-287.
- (a) Piozzi, F. Heterocycles 1994, 37, 603–626.
   (b) Tozzi, F.; Bruno, M.; Rosselli, S. Heterocycles 1998, 48, 2185–2203.
   (c) Ulubelen, A.; Topcu, G.; Sonmez, U. In Studies in Natural Products Chemistry, Bioactive Natural Products (Part D); Atta-ur-Rahman, Ed.; (6) Elsevier: Amsterdam, 2000; Vol. 23, pp 591-648.
- (7)
- Simmonds, M. S. J.; Blaney, W. M.; Ley, S. V.; Bruno, M.; Savona, G. *Phytochemistry* **1989**, *28*, 1069–1071. de la Torre, M. C.; Rodriguez, B.; Piozzi, F.; Savona, G.; Bruno, M.; Carreiras M. C. *Phytochemistry* **1990**, *29*, 579–584. (8)

- (9) Fayos, J.; Fernandez-Gadea, F.; Pascual, C.; Perales, A.; Piozzi, F.; Rico, M.; Rodriguez, B.; Savona, G. J. Org. Chem. 1984, 49, 1789-1793.
- (10) Pascual, C.; Fernandez, P.; Garcia-Alvarez, M. C.; Marco, J. L.; Fernandez-Gadea, F.; de la Torre, M. C.; Hueso-Rodriguez, J. A.; Rodriguez, B.; Bruno, M.; Paternostro, M.; Piozzi, F.; Savona, G. Phytochemistry 1986, 25, 715-718.
- de la Torre, M. C.; Rodriguez, B.; Bruno, M.; Savona, G.; Piozzi, F.; (11)Servettaz, O. Phytochemistry 1988, 27, 213-216.
- (12) Hanson, J. R.; Rivett, D. E. A.; Ley, S. V.; Williams, D. J. J. Chem. Soc., Perkin Trans. 1 1982, 1005-1008.
- Simoes, F.; Rodriguez, B.; Bruno, M.; Piozzi, F.; Savona, G.; Arnold, (13)A. N. Phytochemistry 1989, 28, 2763-2768.
- (14) Malakov, P. Y.; Papanov, G. Y. Z. Naturforsch. 1987, 42b, 1000-1002.
- (15)Bruno, M.; Bondì, M. L.; Rosselli, S.; Piozzi, F.; Al-Hillo, M. R. J.; Lamara, K.; Ladjel, S. J. Nat. Prod. 2000, 63, 1029-1031.
- (16) Ladjel, S.; Lamara, K.; Al-Hillo, M. R. Y.; Pais, M. Phytochemistry 1994, 37, 1663-1666.
- (17)Garcia-Alvarez, M. C.; Marco, J. L.; Rodriguez, B.; Savona, G.; Piozzi, F. Phytochemistry 1982, 21, 2559-2562.
- (18) Al-Yahya, M. A.; Muhammad, I.; Mirza, H. H.; El-Feraly, F. S. J. Nat. Prod. 1993, 56, 830-842.
- (19)Fernandez-Gadea, F.; Rodriguez, B.; Savona, G.; Piozzi, F. Phytochemistry 1984, 23, 1113-1118.
- (20)Jakupovic, J.; Baruah, R. N.; Bohlmann, F.; Quack, W. Planta Med. **1985**, *51*, 341–342.
- Rodriguez, B.; de la Torre, M. C.; Bruno, M.; Piozzi, F.; Vassallo, N.; (21)Cirinina, R.; Servettaz, O. *Phytochemistry* **1996**, 43, 435–438. (22) Gallardo, O. V.; Tonn, C. E.; Nieto, M.; Morales, G. B.; Giordano, O.
- S. Nat. Prod. Lett. 1996, 8, 189-197.
- (23) Savona, G.; Piozzi, F.; Servettaz, O.; Rodriguez, B.; Hueso-Rodriguez, J. A.; de la Torre, M. C. Phytochemistry 1986, 25, 2569-2572.
- (24) Navarro, T.; El Oualidi, J. Flora Mediterranea 2000, 10, 349-363. (25) Bruno, M.; Piozzi, F.; Rodriguez, B.; de la Torre, M. C.; Servettaz, O. Phytochemistry 1992, 31, 4366-4367.
- (26) Alcazar, R.; de la Torre, M. C.; Rodriguez, B.; Bruno, M.; Piozzi, F.; Savona, G.; Arnold, N. A. Phytochemistry 1992, 31, 3957-3960.
- (27) Papanov, G. Y.; Malakov, P. Y. Z. Naturforsch. 1981, 36b, 112-113.
- (28) Sun, H.; Chen, X.; Wang, T.; Pan, L.; Lin, Z.; Chen, D. Phytochemistry **1991**, 30, 1721-1723.
- (29) Papanov, G. Y.; Malakov, P. Y.; Bohlmann, F. Phytochemistry 1981, 20, 170-171.
- (30) Papanov, G. Y.; Malakov, P. Y. Z. Naturforsch. 1982, 37b, 519-520. Malakov, P. Y.; Papanov, G. Y.; Mollov, N. M.; Spassov, S. L. Z. (31)
- Naturforsch. 1978, 33b, 1142-1144.
- (32)Gacs-Baitz, E.; Kajtàr, M.; Papanov, G. Y.; Malakov, P. Y. Heterocycles 1982, 19, 539-550.
- Bruno, M.; Dominguez, G.; Lourenco, A.; Piozzi, F.; Rodriguez, B.; (33)Savona, G.; de la Torre, M. C.; Arnold, N. A. Phytochemistry 1991, 30, 3693-3697.

#### NP010303M